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A new method for generating adaptive moving grids is formulated based on phys-
ical quantities. Level set functions are used to construct the adaptive grids, which are
solutions of the standard level set evolution equation with the Cartesian coordinates
as initial values. The intersection points of the level sets of the evolving functions
form a new grid at each time. The velocity vector in the evolution equation is chosen
according to a monitor function and is equal to the node velocity. A uniform grid is
then deformed to a moving grid with desired cell volume distribution at each time.
The method achieves precise control over the Jacobian determinant of the grid map-
ping as the traditional deformation method does. The new method is consistent with
the level set approach to dynamic moving interface problems.c© 2000 Academic Press
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1. INTRODUCTION

Key problems in numerical simulation of time-dependent partial differential equations
are grid generation and grid adaptation. General grid generation methods are discussed by
Thompsonet al. [2], Zegeling [3], Knupp and Steinberg [4], Carey [5], and Liseikin [6].
The problem this paper deals with is how to generate adaptive moving grids.

The tasks of simulating transient problems on three-dimensional domains become enor-
mously difficult when tens of millions of nodes are needed. This is especially so in transient
problems with moving fronts, shock waves, etc. For instance, to correctly simulate the
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dendritic growth of a crystal modeled by a Stefan problem, one must use fine grids near
the interface between the solid phase and the liquid phase. Figure 8 of [26] shows the im-
portance of grid sizes. Using a state-of-the-art level set method, the 100× 100, 200× 200,
and 300× 300 fixed uniform grids on the unit square give rise to unsatisfactory results at
the interface. It takes the 400× 400 fixed grid to produce a sharp result. A 3D simulation
would need 64 million nodes. This would be too costly.

We hope to improve the accuracy and efficiency of the simulation by using adaptive
grids. The idea is to generate the grids according to the salient features of the solution, so
that the nodes will be concentrated in regions where the solution changes rapidly in order
to improve accuracy, and fewer grid points are used in regions where small changes in the
solution occur.

We now describe a general idea of moving grids. Suppose that we want to simulate a
scalar or vector fieldu(x, t) satisfying

ut (x, t) = L(u); (1)

hereL is a differential operator defined on a physical domainÄ= D2 in Rn, n= 1, 2, 3.
A common idea is to construct a transformationφ: D1× [0, T ]→ D2 which moves a fixed
number of grid points onÄ to adapt to the numerical solution as it is being computed on the
computational domainD1. To be qualified as a transformation,φmust be one to one and onto.
Variational methods (cf. [1, 7]) and elliptic PDE methods (cf. [2]) define this transformation
as the solution of a system of PDEs which is created to control various aspects of the grid such
as orthogonality (“skewness”), smoothness, and cell size. The resulting system of PDEs for
grid generation is often nonlinear and its solution requires intensive computation. Significant
contributions were made to dynamically adapt the grid by controlling the cell size through
the Jacobian determinant of the transformation in [1, 2, 7, 8]. The moving finite element
method was developed in [9] and is useful for certain unsteady problems. Recently, moving
mesh methods based on moving mesh partial differential equations [12] were developed
that have remarkable capability to track rapid spatial and temporal transitions for some
model problems. Hybrid techniques that use both grid motion and local refinement showed
their effectiveness for 2D problems [10].

The deformation method originated from differential geometry (see [13, 14]). It deter-
mines the node velocity by a monitor function and thus the time-dependent differential
equations can be transformed by nodal mapping into the computational domain. The trans-
formed equation can then be simulated on a fixed orthogonal grid. The static version of
the deformation method was used with a finite volume solver in flow calculation problems
[19]. A one-dimensional version of the method was used with a discontinuous Galerkin
finite element method in numerical simulation of a convection–diffusion problem [17]. For
finite difference algorithms that are based on orthogonal grids, we transform Eq. (1) by
x=φ(ξ, t) and solve the transformed equation on a fixed orthogonal grid on theξ-domain
(the commutational domain).

In this paper, we formulate a new deformation method which is based on the level set
approach and the transport formula from fluid dynamics. The level set deformation method
moves the nodes with a proper velocity so that the nodal mapping has the desired Jacobian
determinant. Thus it precisely controls the cell size distribution according to a positive
monitor function. As in the deformation method, the velocity vector field is constructed
by solving a Poisson equation determined by the monitor function. The main difference
between the two methods is that the deformation method uses a system of ODEs to move
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the nodes while the level set deformation method uses a system of level set evolution PDEs
to generate the moving grid. The ODEs are, of course, the characteristic equations for the
PDEs.

Earlier work using the level set method for grid generation was done by Sethian in [24].
Our technique is quite different. We control the Jacobian of the grid mapping, while in [24]
the main idea is to create a body-fitted coordinate using the level set function. Then the other
coordinates are obtained by solving ODEs. We note that our method can also be extended
to obtain body-fitted coordinates while still controlling the Jacobian.

Recall that the Jacobian determinant of a mappingφ(x, t) from D1 to D2 inRn
, n= 1, 2, 3,

is J(φ)= det∇φ= |d A′|/|d A|, whered A′ is the image of a volume (area, in 2D) element
d A. Our goal is to constructφ such thatJ(φ)= f (φ, t), since this will give precise control
over the cell size in any dimensions.

Suppose that the solution to (1) has been computed at time stept = tk−1, and a preliminary
computation has been done at time levelt = tk. Assume that we are provided with some
positive error estimatorδ(x, t) at the time steptk. Define a monitor function,

f (x, t) = C1/δ(x, t), (2)

whereC1=C1(t) is a positive scaling parameter such that at each time step we have∫
D2

(
1

f (x, tk)
− 1

)
d A= 0. (3)

We then seek a transformationφ: D1→ D2= D2 such that

det∇φ(x, t) = f (φ(x, t), t) tk−1 ≤ t ≤ tk,
(4)

φ(x, tk−1) = φk−1(x) x on D1,

wherex is a grid node of an initial grid andφk−1(x) represents the coordinates of the node
at t = tk−1 ((3) is necessary for (4) to be true). We specify thatφ(x)∈ ∂D2 for all x∈ ∂D1.
Note that (4) ensures the size of the transformed cells will be proportional tof ; i.e., the
grid will be appropriately condensed in regions of high error and stretched in regions of
small error. It is well known that if the Jacobian determinant of such a transformationφ is
positive in D1, thenφ is one-to-one in all ofD1, ensuring that the grid will not fold onto
itself. Various equidistribution principles can be used to construct the monitor function. A
posteriori error estimates (if available), residuals, truncation errors, etc. are redistributed
evenly over the whole domain. In most cases, we want to put refined grids in the regions
whereu changes rapidly. For instance, if the flow patterns exhibit shock waves, we can take
(for Euler flows)

f = C1/
(
1+ C2|∇ p|2), (5)

wherep is the pressure,C2 is a constant for adaptation itensity, andC1 is a normalization
parameter. In addition to the gradient ofp, terms involving the value ofp and the second
derivatives ofp (or the curvature of its level sets) can also be included. For instance,

f = C1/
(
1+ α|p|2+ β|∇ p|2+ γ |∇2 p|2). (6)
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For interface resolution, we can, for instance, constructf by using the signed distance
functiond from the interface as follows: Letf be piecewise linear such that

f =
{

1 if |d| > 0.1

0.2 if d = 0.
(7)

Normalize f so that
∫

D(1/ f − 1) = 0, which is required if (4) is to be satisfied. The
constants 0.1 and 0.2 in (7) can be changed according to the desired intensity of adaptation
at the interface. The signed distance function can easily be computed as was done in [25].

2. A LEVEL SET DEFORMATION METHOD

In this section, a new moving grid method is formulated. The usual evolution equation
for level set functions (as in [27]) with the Cartesian coordinates as initial values is solved.
The velocity vector in the evolution equation is chosen according to a monitor function.
The intersection points of the level sets of the evolving solutions will form a new grid at
each time. Numerical examples will be provided in which a uniform grid is deformed to
moving grids with prescribed cell size distribution at each time.

We first set up the principle of redistribution in the one-dimensional case before describing
the method in multiple dimensions. Suppose that a positive monitor functionf (x, t) is given.
We want to construct a grid ofN+ 1 nodes,

x0(t) = 0< x1(t) < x2(t) < · · · < xi (t) < xi+1(t) < · · · < xN(t) = 1,

on [0, 1] at each timet with the lengthxi+1− xi = f (x′i , t)/N wherex′i is the midpoint of
the subinterval [xi , xi+1]. We seek a level set functionφ from [0, 1] to [0, 1], which sendsxi

toki =φ(xi ), where pointski = i /N, i = 0, 1, 2, . . . , N, form a uniform grid on the interval
[0, 1] of they-axis. The conditionxi+1− xi = f (x′i , t)/N is equivalent to

(1/N)/(xi+1− xi ) = 1/ f (x′i , t),

whose left hand side tends to the Jacobian determinant∂φ/∂x asN→∞. At the limit, we
get the condition forφ that

∂φ/∂x = 1/ f (x, t) = g(x, t) (denotingg = 1/ f ). (8)

In 1D, this equation can be solved by direct integration,

φ(x) =
∫ x

0
(1/ f (s, t)) ds,

where f is normalized to satisfy the conditionφ(1)= ∫ 1
0 (1/ f (x, t)) dx= 1 for eacht .

The preimages of the evenly placed pointski = i /N under the transformationx→φ(x, t)
are the level sets ofφ and they form the new nodes. This is illustrated by Fig. 1 (see also
Figs. 2a–2i of Example 1). As one can see, evenly placed horizontal lines intersect the graph
of a monotonic functionφ. The projections of the intersection points onto thex-axis are
the nodesxi , i = 1, 2, 3, . . . , of the new grid. By properly evolving the functionφ, we can
control the spacing of the moving grid on 0≤ x≤1 precisely.
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FIG. 1. Level curve.

This idea extends to multiple dimensions as follows. The goal is to generate a nodal
mapping8 from D1→ D2 such thatJ(8)= 1/ f for a positive monitor functionf . To
begin, let us recall the basic concept of modeling a moving front by level sets. Suppose that
there is a moving front in a fluid flow with a velocity fieldv= (xt , yt , zt ), wherex= (x, y, z)
is the position of a (fluid) particle at timet . We introduce a smooth functionφ(x, y, z, t)
with the property that the front is given by the zero level set ofφ, i.e.,φ(x, y, z, t)= 0.
Differentiate the identity with respect tot ; we getφt +φxxt +φyyt +φzzt = 0, which can
be written as

φt (x, y, z, t)+ 〈∇φ, v〉 = 0. (9)

This is the evolution equation for the level set functionφ. In the calculations of fluid flows,
v is the velocity of the fluid particle occupying the point(x(t), y(t), z(t)) at timet . Other
important geometric parameters such as the curvature of the front and the normal vector to
the front can easily be determined fromφ. See [27] for an overview. In the level set moving
grid method,v is the node velocity.

Our purpose is to generate an adaptive grid according to a positive monitor functionf .
In two dimensions, we construct two functionsφ andψ by (9) with a suitable vector fieldv
(v is determined in (18) below). Then the intersections of their level set curves will be the
new nodes. Thus, letφ(x, y, t) andψ(x, y, t) be solutions to the evolution PDE{

φt (x, y, t)+ 〈∇φ, v〉 = 0

ψt (x, y, t)+ 〈∇ψ, v〉 = 0.
(10)

The initial conditions areφ(x, y, 0)= x, ψ(x, y, 0)= y, respectively. The boundary con-
ditions are

φ(0, y, t) = 0, φ(1, y, t) = 1, φ(x, 0, t) = φ(x, 1, 0) = x;
ψ(x, 0, t) = 0, ψ(x, 1, t) = 1, ψ(0, y, t) = ψ(1, y, t) = y.

Let8= (φ, ψ). The vector fieldv is chosen so that the Jacobian determinant8 is equal to
the reciprocal off , namely

J(8) = ∂(φ,ψ)/∂(x, y) = 1/ f (x, y, t). (11)

Note that this condition is the natural extension of the 1D condition (8).
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In three dimensions, we solve for three functionsφ1, φ2, φ3 from the equations

(φi )t + 〈∇φi , v〉 = 0, i = 1, 2, 3, (12)

with the same type of initial and boundary conditions as in 2D.
Let 8= (φ1, φ2, φ3). A suitable vector fieldv can be determined so that the Jacobian

determinant of the mapping8 is equal to the reciprocal of a monitor functionf , namely

J(φ) = D(φ1, φ2, φ3)/D(x, y, z) = 1/ f (x, y, z, t). (13)

The intersections of their level sets form the nodes of the moving grid.
The key to the success of the proposed method is to determine the velocity vector fieldv

so thatJ= 1/ f = g at everyt . Thus, the grid cell size can be precisely controlled, resulting
in a moving grid that is adaptive according to the monitor functionf . A proper velocity
vectorv can be determined by the condition

gt + div(gv) = 0. (14)

This choice ofv is based on the transport formula in fluid dynamics, which can be found in
any standard textbook on fluid dynamics [28, 29].

Let Ät be the image of an initial regionÄ0 under the flow of the velocity fieldv=
(xt , yt , zt ), wherex= (x, y, z) is the position of a (fluid) particle at timet .

THEOREM(Transport Formula). For any function h(x, t), we have

d

dt

∫
Ät

h dV =
∫
Ät

(
∂h

∂t
+ div(hv)

)
dV. (15)

Let J= D(φ1, φ2, φ3)/D(x, y, z) be the Jacobian determinant of the transformation
(x, y, z)→ (φ1, φ2, φ3). Takingh= g(x, t)= 1/ f in (15), we get, by a change of variables,
that

d

dt

∫
Ät

g dV = d

dt

∫
Ä0

g j−1 dV =
∫
Ät

(
∂g

∂t
+ div(gv)

)
dV = 0, (16)

where (14) is used to get the last equation. In the change of variables,D(x, y, z)/
D(φ1, φ2, φ3)= J−1 is used. (16) implies thatgJ−1= constant sinceÄ0 is arbitrary. Choose
(gJ−1)|t=0= 1. Then we getgJ−1= 1 for anyt > 0 as desired.

To solve forv from (14), we first observe that, in one dimension, condition (14) becomes

∂2w

∂x2
= ∂(gv)/∂x = −gt , wherew = gv,

and we can solve forv by direct integration and get

v(x, t) = −
(∫ x

0
gt

)/
g = 2w

2x

/
g.

This suggests a simple method for determining the velocity vector fieldv in multiple
dimensions. Letf (x, y, z, t)>0 be the desired grid cell size distribution, which is con-
structed according to the physical variables being simulated and is normalized as in (3). Let
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g= 1/ f . We first solve for a real-valued function (potential)w from the Poisson equation
on thexyz-domain,

4w = −gt , (17)

with the Neumann boundary condition. Then we set

v = ∇w/g. (18)

It follows that div(gv)= div(∇w)=4w= −gt as desired. The method is based on solving
a scalar Poisson equation, and thus it works for general three-dimensional domains.

2.1. Numerical Examples

EXAMPLE 1 (Fig. 2). Moving grids on [0, 1]. Letf = 1/g whereg= 1+ 10t (x2− x+
1/6). By direct integration, we can verify that∫ 1

0
g dx= [x + 10t (x3/3− x2/2+ x/6)]x=1

x=0 = 1, for everyt.

Thus the normalization condition (3) is analytically satisfied. We want to generate a
moving grid which is a uniform grid on [0, 1] att = 0. In 1D the velocity field is a real-
valued function. Solving forv from condition (14),

div(gv) = (gv)x = −gt ,

we get, by direct integration,

v = 10(−x3/3+ x2− x/6)/g.

Next, solve forφ: [0, 1]× [0, T ]→ [0, 1] from the evolution equation

φt (x, t)+ 〈φx, v〉 = 0

with the initial and boundary conditionsφ(x, 0)= x, φ(0, t)= 0, φ(1, t)= 1.
Let 1/N be the spacing of a uniform grid on [0, 1]. The preimages of the nodes of the

uniform grid on [0, 1] form the moving grid at selected timet . In Fig. 2, f andφ are plotted
along with the nodes of the moving grid withN= 60. Note that the grid spacing nearx= 0
andx= 1 is getting smaller and it is getting larger nearx= 0.5. In fact, this is the intended
distribution sincedφ/dx= g= 1/ f , which means1xi = f/N.

EXAMPLE 2 (Fig. 3). A 60× 60 uniform grid is deformed into a grid concentrated
around a pair of circles and the grid moves appropriately as the circles merge into each
other. Here the functiond is the product of level set functions for two moving circles,

d = ((x − a1)
2+ (y− b1)

2− r 2
)(
(x − a2)

2+ (y− b2)
2− ρ2

)
,

where (a1, b1) is the (moving) center of the first circle and (a2, b2) is the (moving) center of
the second circle. The zero set ofd consists of the two circles andr andρ are their varying
radii. Initially (a1, b1)= (0.4, 0.5), (a2, b2)= (0.6, 0.5), and r = ρ= 0.18. The level set
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FIG. 2. Monitor functions, level set functions, and grid plots for Example 1.



LEVEL-SET-BASED DEFORMATION METHODS 111

FIG. 2—Continued
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FIG. 2—Continued
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FIG. 2—Continued
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FIG. 2—Continued

deformation method deforms the initial uniform grid fromt = 0 tot = 0.5 using the monitor
function

f =


1− 2t + 2t (0.2− 8d) if −0.1< d < 0

1− 2t + 2t (0.2+ 8d) if 0 < d < 0.1

1 if |d| > 0.1.

(19)

Then the adaptive gridt = 0.5 continues to deform according to the monitor function

f =


0.2− 8d if −0.1< d < 0

0.2+ 8d if 0 < d < 0.1

1 if |d| > 0.1.

(20)

The time discretization of the evolution equations used a second-order TVD Runge–Kutta
scheme and the spatial derivatives were approximated by a second-order ENO scheme (as
in [31]). The second-order ENO scheme is also a TVD scheme. However, higher order ENO
schemes do not have the property. The main reason we used an ENO scheme is that the
functionsφ andψ must remain monotone. We note that the extra cost incurred by using this
method rather than Lax–Wendroff, for example, is tiny compared to the overall cost of the
algorithm. The elliptic solver used to compute the velocity field is by far the most expensive
part of the algorithm. The Poisson equation was approximated using central differencing
for both derivatives. The resulting system of linear algebraic equations was then solved with
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FIG. 3. Grid plots for Example 2.

the successive overelaxation (SOR) method, where the value of the relaxation constant was
chosen as 1.3. The Neumann boundary conditions were implemented using ghost points.
The new position of the nodes were obtained by the following scheme (see Fig. 4): Let
8: (x, y)→ (φ, ψ). Then by (11), we know that (t is dropped for simplicity of presentation)

J(8−1) = f (x(ki , kj ), y(ki , kj )),

FIG. 4. Grid lines in thexy-plane.
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FIG. 5. Grid plots for Example 3.
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FIG. 5—Continued

where(x(ki , kj ), y(ki , kj )) are the new node coordinates. Settingφ= ki andψ = kj , then
(x(ki , kj ), y(ki , kj ))=8−1(ki , kj ). Thus the new nodal positions can be obtained by inter-
polation.

EXAMPLE 3 (Fig. 5). A 100× 100 initial uniform grid deforms fromt = 0 to t = 0.5
to a grid clustered around the interface of the solidification phenomenon modeled by the
Stefan equation. The monitor functionf is defined by

f =


1− 2t + 2t (0.2− 4d) if −0.2< d < 0

1− 2t + 2t (0.2+ 4d) if 0 < d < 0.2

1 if |d| > 0.2,

(21)

whered is proportional to the level set functionφ, which is calculated by a level set method
(see [26]), that is,d= cφ(x, y, t), wherec is the adaptation constant (in the examplec= 10).
The vector fieldv, the solutions to the level set evolution equation, and the new node positions
were obtained as in example 2.
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FIG. 6. Grid plots for Example 4.

Figure 5 shows the moving grid follows the interface closely.

EXAMPLE 4 (Fig. 6). A 50× 50× 50 uniform grid on the unit cube inR3 is deformed
into a grid concentrated around a pair of spheres and the grid moves appropriately as the
spheres merge into each other. The monitor functionf is also defined by (21) with the
functiond

d = ((x − a1)
2+ (y− b1)

2− r 2
)(
(x − a2)

2+ (y− b2)
2− ρ2

)
where (a1, b1, c1) is the (moving) center of the first sphere and(a2, b2, c2) is the (moving)
center of the second sphere. The zero set ofd consists of the two spheres andr andρ are
their varying radii. Initially(a1, b1, c1)= (0.4, 0.5, 0.5), (a2, b2, c2)= (0.6, 0.5, 0.5), and
r = ρ= 0.18.
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FIG. 6—Continued

2.2. Application to Time-Dependent PDEs

We describe the procedures of using our method for solving time-dependent PDE (1),
which works for any dimensions. For simplicity, let us consider the dimensionn= 2. A
monitor function f is determined by the solution being calculated. Then we determine
v= f∇w, wherew satisfies

4w = −
(

1

f

)
t

,

with the Neumann boundary condition. Next, solve forφ andψ from (10),{
φt (x, y, t)+ 〈∇φ, v〉 = 0

ψt (x, y, t)+ 〈∇ψ, v〉 = 0,
(22)

with the same boundary and initial conditions.
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FIG. 6—Continued

Let 8= (φ, ψ). Put a uniform grid on the unit square [0, 1]× [0, 1] of theφψ-plane.
The nodeφ=a, ψ = b in theφψ-plane has a preimage(x(a, b, t), y(a, b, t)) under8 at
each timet , which is the node of the moving grid in thexy-plane corresponding to(a, b)
on theφψ-plane (see Fig. 4). Consider

{
φ(x, y, t) = a

ψ(x, y, t) = b.
(23)

Differentiating (23) with respect tot , we get

{
φt (x, y, t)+ φx ẋ + φy ẏ = 0

ψt (x, y, t)+ ψx ẋ + ψy ẏ = 0
(24)
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Comparing (24) with (22), we get

(
ẋ

ẏ

)
= v.

Namely, the node velocity is equal tov.
For simplicity of presentation, let us consider the case whereu(x, y, t) is a scalar function.

Let U (φ, ψ, t)= u(x(φ, ψ, t), y(φ, ψ, t), t). Then

Ut = uxẋ + uy ẏ+ ut ,

whereut = L(u)by (1), (ẋ, ẏ)= v. The derivatives that are inL(u), such asux, uy, uxx, uxy,
anduyy, are transformed also. For instance, from

Uφ = uxxφ + uyyφ

Uψ = uxxψ + uyyψ,

we can solve forux anduy uniquely, since

1

f
=
∣∣∣∣xφ yφ
xψ yψ

∣∣∣∣ > 0.

The higher derivatives can be obtained similarly. The transformed equation forU (φ, ψ, t)
takes the form of

Ut = L̃(U ), (25)

whereL̃ is a differential operator inφ andψ .
Finally, (25) will be solved on a fixed uniform grid in theφψ-plane.

3. CONCLUSION

A new moving grid method is formulated that is based on the standard evolution equation
for level set functions. A suitable velocity vector field can be constructed from a positive
monitor function by solving a scalar Poisson equation. The resulting moving grid has the
desired cell size distribution specified by the monitor function at each time. Numerical ex-
amples in 1D, 2D, and 3D are given to demonstrate the method. Further numerical results for
solving time-dependent PDEs based on Section 2.2 will be published in subsequent papers.
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